Self-dual Yang-Mills fields in pseudo-Euclidean spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 376599
(http://iopscience.iop.org/0305-4470/37/25/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:19

Please note that terms and conditions apply.

Self-dual Yang-Mills fields in pseudo-Euclidean spaces

E K Loginov
Physics Department, Ivanovo State University, Ermaka St. 39, Ivanovo, 153025, Russia
E-mail: loginov@ivanovo.ac.ru

Received 12 March 2004
Published 9 June 2004
Online at stacks.iop.org/JPhysA/37/6599
doi:10.1088/0305-4470/37/25/012

Abstract

The self-duality Yang-Mills equations in pseudo-Euclidean spaces of dimensions $d \leqslant 8$ are investigated. New classes of solutions of the equations are found. Extended solutions to the $D=10, N=1$ supergravity and super Yang-Mills equations are constructed from these solutions.

PACS number: 04.50.+h

1. Introduction

In 1983 Corrigan et al [1] proposed a generalization of the self-dual Yang-Mills equations in dimension $d>4$:

$$
\begin{equation*}
f_{m n p s} F^{p s}=\lambda F_{m n} \tag{1}
\end{equation*}
$$

where the numerical tensor $f_{\text {mnps }}$ is completely antisymmetric and $\lambda=$ const is a nonzero eigenvalue. By the Bianchi identity $D_{[p} F_{m n]}=0$, it follows that any solution of (1) is a solution of the Yang-Mills equations $\left[D^{m}, F_{m n}\right]=0$. Some of these solutions can be found in [2].

The many-dimensional Yang-Mills equations appear in the low-energy effective theory of superstrings and supermembranes [3, 4]. In addition, there is a hope that Higgs fields and supersymmetry can be understood through dimensional reduction from $d>4$ dimensions down to $d=4$ [5].

The paper is organized as follows. Section 2 contains well-known facts about CayleyDickson algebras and Lie algebras connected with them. In sections 3 and 4 the self-duality Yang-Mills equations in pseudo-Euclidean spaces of dimensions $d \leqslant 8$ are investigated. In section 5 extended solutions to the $D=10, N=1$ supergravity and super Yang-Mills equations are constructed from these solutions.

2. Cayley-Dickson algebras

Let us recall that the algebra A satisfying the identities

$$
\begin{equation*}
x^{2} y=x(x y) \quad y x^{2}=(y x) x \tag{2}
\end{equation*}
$$

is called alternative. It is obvious that any associative algebra is alternative. The most important example of nonassociative alternative algebra is the Cayley-Dickson algebra. Let us recall its construction (see [6]).

Let A be an algebra with an involution $x \rightarrow \bar{x}$ over a field F of characteristic $\neq 2$. Given a nonzero $\alpha \in F$ we define a multiplication on the vector space $(A, \alpha)=A \oplus A$ by

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-\alpha \bar{y}_{2} y_{1}, y_{2} x_{1}+y_{1} \bar{x}_{2}\right)
$$

This makes (A, α) an algebra over F. It is clear that A is isomorphically embedded in (A, α) and $\operatorname{dim}(A, \alpha)=2 \operatorname{dim} A$. Let $e=(0,1)$. Then $e^{2}=-\alpha$ and $(A, \alpha)=A \oplus A e$. Given any $z=$ $x+y e$ in (A, α) we suppose $\bar{z}=\bar{x}-y e$. Then the mapping $z \rightarrow \bar{z}$ is an involution in (A, α).

Starting with the base field F the Cayley-Dickson construction leads to the following sequence of alternative algebras:
(1) F, the base field.
(2) $\mathbb{C}(\alpha)=(F, \alpha)$, a field if $x^{2}+\alpha$ is the irreducible polynomial over F; otherwise, $\mathbb{C}(\alpha) \simeq F \oplus F$.
(3) $\mathbb{H}(\alpha, \beta)=(\mathbb{C}(\alpha), \beta)$, a generalized quaternion algebra. This algebra is associative but not commutative.
(4) $\mathbb{O}(\alpha, \beta, \gamma)=(\mathbb{H}(\alpha, \beta), \gamma)$, a Cayley-Dickson algebra. Since this algebra is not associative, the Cayley-Dickson construction ends here.
The algebras in (1)-(4) are called composition. Any of them has the non-degenerate quadratic form (norm) $n(x)=x \bar{x}$, such that $n(x y)=n(x) n(y)$. In particular, over the field \mathbb{R} of real numbers, the above construction gives three split algebras (e.g. if $\alpha=\beta=\gamma=-1$) and four division algebras (if $\alpha=\beta=\gamma=1$): the fields of real \mathbb{R} and complex \mathbb{C} numbers, the algebras of quaternions \mathbb{H} and octonions \mathbb{O}, taken with the Euclidean norm $n(x)$. Note also that any simple nonassociative alternative algebra is isomorphic to the Cayley-Dickson algebra $\mathbb{O}(\alpha, \beta, \gamma)$.

Let A be the Cayley-Dickson algebra and $x \in A$. Denote by R_{x} and L_{x} the operators of right and left multiplication in A

$$
R_{x}: a \rightarrow a x \quad L_{x}: a \rightarrow x a .
$$

It follows from (2) that

$$
\begin{equation*}
R_{a b}-R_{a} R_{b}=\left[R_{a}, L_{b}\right]=\left[L_{a}, R_{b}\right]=L_{b a}-L_{a} L_{b} \tag{3}
\end{equation*}
$$

Consider the Lie algebra $\mathcal{L}(A)$ generated by all operators R_{x} and L_{x} in A. Choose in $\mathcal{L}(A)$ the subspaces $R(A), S(A)$ and $D(A)$ generated by the operators $R_{x}, S_{x}=R_{x}+2 L_{x}$ and $2 D_{x, y}=\left[S_{x}, S_{y}\right]+S_{[x, y]}$ respectively. Using (3), it is easy to prove that

$$
\begin{align*}
& 3\left[R_{x}, R_{y}\right]=D_{x, y}+S_{[x, y]} \tag{4}\\
& {\left[R_{x}, S_{y}\right]=R_{[x, y]}} \tag{5}\\
& {\left[R_{x}, D_{y, z}\right]=R_{[x, y, z]}} \tag{6}\\
& {\left[S_{x}, S_{y}\right]=D_{x, y}-S_{[x, y]}} \tag{7}\\
& {\left[S_{x}, D_{y, z}\right]=S_{[x, y, z]}} \tag{8}\\
& {\left[D_{x, y}, D_{z, t}\right]=D_{[x, z, t], y}+D_{x,[y, z, t]}} \tag{9}
\end{align*}
$$

where $[x, y, z]=[x,[y, z]]-[y,[z, x]]-[z,[x, y]]$. It follows from (4)-(9) that the algebra $\mathcal{L}(A)$ is decomposed into the direct sum

$$
\mathcal{L}(A)=R(A) \oplus S(A) \oplus D(A)
$$

of the Lie subalgebras $D(A), D(A) \oplus S(A)$ and the vector space $R(A)$.
In particular, if A is a real division algebra, then $D(A)$ and $D(A) \oplus S(A)$ are isomorphic to the compact Lie algebras g_{2} and $\operatorname{so}(7)$ respectively. If A is a real split algebra, then $D(A)$ and $D(A) \oplus S(A)$ are isomorphic to noncompact Lie algebras g_{2}^{\prime} and $\operatorname{so}(4,3)$.

3. Self-dual solutions in $d=8$

Let A be a real linear space equipped with a nondenerate symmetric metric g of signature $(8,0)$ or $(4,4)$. Choose the basis $\left\{1, e_{1}, \ldots, e_{7}\right\}$ in A such that

$$
\begin{equation*}
g=\operatorname{diag}(1,-\alpha,-\beta, \alpha \beta,-\gamma, \alpha \gamma, \beta \gamma,-\alpha \beta \gamma) \tag{10}
\end{equation*}
$$

where $\alpha, \beta, \gamma= \pm 1$. Define the multiplication

$$
\begin{equation*}
e_{i} e_{j}=-g_{i j}+c_{i j}^{k} e_{k} \tag{11}
\end{equation*}
$$

where the structural constants $c_{i j k}=g_{k s} c_{i j}{ }^{s}$ are completely antisymmetric and different from 0 only if

$$
\begin{equation*}
c_{123}=c_{145}=c_{167}=c_{246}=c_{275}=c_{374}=c_{365}=1 \tag{12}
\end{equation*}
$$

The multiplication (11) transforms A into a linear algebra. It can easily be checked that the algebra $A \simeq \mathbb{O}(\alpha, \beta, \gamma)$. In the basic $\left\{1, e_{1}, \ldots, e_{7}\right\}$ the operators

$$
\begin{equation*}
R_{e_{i}}=e_{i 0}+\frac{1}{2} c_{i}{ }^{j k} e_{j k} \quad L_{e_{i}}=e_{i 0}-\frac{1}{2} c_{i}{ }^{j k} e_{j k} \tag{13}
\end{equation*}
$$

where $e_{i j}$ are generators of the Lie algebra $\mathcal{L}(A)$ satisfying the switching relations

$$
\begin{equation*}
\left[e_{m n}, e_{p s}\right]=g_{m p} e_{n s}-g_{m s} e_{n p}-g_{n p} e_{m s}+g_{n s} e_{m p} \tag{14}
\end{equation*}
$$

Now, let G be a matrix Lie group constructed by the Lie algebra $D(A) \oplus S(A)$. In the space A equipped with the metric (10) we define the completely antisymmetric G-invariant tensor $f_{\text {mnps }}(\mathrm{cf}[7])$:

$$
f_{i j k 0}=c_{i j k} \quad f_{i j k l}=g_{i l} g_{j k}-g_{i k} g_{j l}+c_{i j m} c_{k l}^{m}
$$

where $i, j, k, l \neq 0$. Representing the nonzero components of $f_{\text {mnps }}$ in the explicit form

$$
\begin{aligned}
& f_{0123}=f_{0145}=f_{0167}=f_{0246}=f_{0275}=f_{0374}=f_{0365}=1 \\
& f_{4567}=f_{2367}=f_{2345}=f_{1357}=f_{1364}=f_{1265}=f_{1274}=1
\end{aligned}
$$

we see that the tensor $f_{\text {mnps }}$ satisfies the identity

$$
\begin{equation*}
f_{m n i j} f_{p s}{ }^{i j}=6\left(g_{m p} g_{n s}-g_{m s} g_{n p}\right)+4 f_{m n p s} \tag{15}
\end{equation*}
$$

Define the projectors $\tilde{f}_{\text {mnps }}$ of $\mathcal{L}(A)$ onto the subalgebra $D(A) \oplus S(A)$ and its generators $\tilde{f}_{m n}$ by

$$
\tilde{f}_{m n p s}=\frac{3}{8}\left(g_{m p} g_{n s}-g_{m s} g_{n p}\right)-\frac{1}{8} f_{m n p s} \quad \quad \tilde{f}_{m n}=\tilde{f}_{m n}{ }^{i j} e_{i j}
$$

It follows from (15) that

$$
\begin{align*}
& f_{m n i j} \tilde{f}_{p s}{ }^{i j}=-2 \tilde{f}_{m n p s} \tag{16}\\
& f_{m n i j} \tilde{f}^{i j}=-2 \tilde{f}_{m n} . \tag{17}
\end{align*}
$$

Using the identities (7)-(9) and (13), we get the switching relations

$$
\begin{equation*}
\left[\tilde{f}_{m n}, \tilde{f}_{p s}\right]=\frac{3}{4}\left(\tilde{f}_{m[p} g_{s] n}-\tilde{f}_{n[p} g_{s] m}\right)-\frac{1}{8}\left(f_{m n}{ }^{k}{ }_{[p} \tilde{f}_{s] k}-f_{p s}{ }^{k}{ }_{[m} \tilde{f}_{n] k}\right) \tag{18}
\end{equation*}
$$

Now we can find solutions of (1). We choose the ansatz (cf [2])

$$
\begin{equation*}
A_{m}(x)=\frac{4}{3} \frac{\tilde{f}_{m i} x^{i}}{\rho^{2}+r^{2}} \tag{19}
\end{equation*}
$$

where $r^{2}=x_{k} x^{k}$ and $\rho \in \mathbb{R}$. Using the switching relations (18), we get

$$
\begin{equation*}
F_{m n}(x)=-\frac{4}{9} \frac{\left(6 \rho^{2}+3 r^{2}\right) \tilde{f}_{m n}+8 \tilde{f}_{m n i}^{s} \tilde{f}_{s j} x^{i} x^{j}}{\left(\rho^{2}+r^{2}\right)^{2}} \tag{20}
\end{equation*}
$$

It follows from (16), (17) that the tensor $F_{m n}$ is self-dual. If the metric (10) is Euclidean, then we have the well-known solution of equations (1) (see [2]). If the metric (10) is pseudoEuclidean, then we have a new solution.

4. Solutions in $d<8$

Now we will find solutions of the self-duality equations in dimension $d<8$. If B_{α} is a subalgebra of the real Cayley-Dickson algebra A, then the subgroup H_{α} of automorphisms of A leaving the element of B_{α} fixed is called the Galois group of A over B_{α}. A description of these groups is known [8]. In particular, if A is the real division algebra and $B_{1} \simeq \mathbb{R}, B_{2} \simeq \mathbb{C}, B_{3} \simeq \mathbb{H}$, then

$$
G \simeq \operatorname{Spin}(7) \quad H_{1} \simeq G_{2} \quad H_{2} \simeq S U(3) \quad H_{3} \simeq S U(2)
$$

If A is the real split algebra, then for the same choice of B_{i},

$$
G \simeq \operatorname{Spin}(4,3) \quad H_{1} \simeq G_{2}^{\prime} \quad H_{2} \simeq S U(2,1) \quad H_{3} \simeq S U(1,1)
$$

Obviously, the orthogonal complement B_{α}^{\perp} of B_{α} in A is the H_{α}-invariant subspace of dimension $d_{\alpha}=8-\operatorname{dim} H_{\alpha}$. Now it is easy to construct a completely antisymmetric $H_{\alpha^{-}}$ invariant d_{α}-tensor $f_{m n p s}^{\alpha}$. It is a projection of the d-tensor $f_{\text {mnps }} \in \Lambda^{4}(A)$ onto the subspace $\Lambda^{4}\left(B_{\alpha}\right)$. We can choose nonzero components of $f_{m n p s}$ in the form

$$
\begin{aligned}
& f_{4567}^{1}=f_{2367}^{1}=f_{1274}^{1}=f_{1357}^{1}=f_{1364}^{1}=f_{1265}^{1}=f_{2345}^{1}=1 \\
& f_{1364}^{2}=f_{1265}^{2}=f_{2345}^{2}=1 \\
& f_{2345}^{3}=1
\end{aligned}
$$

Now we can easily get analogues of the identities (15)-(18). In particular, the switching relations (18) take the form
$\left[\tilde{f}_{m n}^{\alpha}, \tilde{f}_{p s}^{\alpha}\right]=\frac{3-\alpha}{4-\alpha}\left(\tilde{f}_{m[p}^{\alpha} g_{s] n}-\tilde{f}_{n[p}^{\alpha} g_{s] m}\right)-\frac{1}{8-2 \alpha}\left(f_{m n}^{\alpha}{ }^{k}{ }_{[p} \tilde{f}_{s] k}^{\alpha}-f_{p s}^{\alpha}{ }^{k}{ }_{[m} \tilde{f}_{n] k}^{\alpha}\right)$.
Note that if we choose the ansatz $A_{m}(x)$ in the form

$$
A_{m}(x)=k \frac{\tilde{f}_{m i}^{\alpha} x^{i}}{\rho^{2}+r^{2}}
$$

then the corresponding field strength $F_{m n}$ is not self-dual for $\alpha=2$. In contrast, if $\alpha=1$ or $\alpha=3$, then the choice of $A_{m}(x)$ in the form (21) reduces to a self-dual field strength. For example, if $\alpha=1$, then $k=3 / 2$ and

$$
\begin{equation*}
F_{m n}(x)=-\frac{3}{2} \frac{\left(2 \rho^{2}+r^{2}\right) \tilde{f}_{m n}^{1}+3 \tilde{f}_{m n i}^{1}{ }^{s} \tilde{f}_{s j}^{1} x^{i} x^{j}}{\left(\rho^{2}+r^{2}\right)^{2}} \tag{21}
\end{equation*}
$$

For a Euclidean metric this solution is known (see [2]). For a pseudo-Euclidean metric we have a new solution. For $\alpha=3$ we have the well-known instanton solution [9] or its noncompact analogue.

Note that in $d=4$ there exists another solution of the Yang-Mills equations. It depends on coordinates of the Minkowski space. Indeed, we choose the ansatz $A_{m}(x)$ in the form

$$
\begin{equation*}
A_{m}(x)=\frac{2 e_{m n} x^{n}}{\lambda^{2}+x_{k} x^{k}} \tag{22}
\end{equation*}
$$

where $e_{m n}$ are generators of the Lie algebra $\operatorname{so}(p, q)$ satisfying the relations $s o(p, q)$. Then the field strength

$$
\begin{equation*}
F_{m n}(x)=\frac{-4 \lambda^{2} \mathrm{e}_{m n}}{\left(\lambda^{2}+x_{k} x^{k}\right)^{2}} \tag{23}
\end{equation*}
$$

and

$$
\partial^{m} F_{m n}+\left[A^{m}, F_{m n}\right]=\frac{8 \lambda^{2} \mathrm{e}_{m n} x^{m}}{\left(\lambda^{2}+x_{k} x^{k}\right)^{3}}\left(4-\delta_{i}^{i}\right)
$$

Hence the ansatz (22) satisfies the Yang-Mills equations if $p+q=4$. If $|p-q|=4$ or 0 , then the algebra $s o(p, q)$ is isomorphic to the direct sum $\operatorname{so}(3) \oplus \operatorname{so}(3)$ or $\operatorname{so}(2,1) \oplus \operatorname{so}(2,1)$ of proper subalgebras. Therefore projecting $A_{m}(x)$ on these subalgebras, we again get the instanton solution [9] or its noncompact analogue. If $|p-q|=2$, then the algebra $\operatorname{so}(p, q)$ is simple. In this case the solution (23) of the Yang-Mills equations is not self-dual.

5. Extended supersymmetric solutions

Let us now show that the above instanton solutions can be extended to solutions of the $D=10, N=1$ supergravity and super Yang-Mills equations. Consider the purely bosonic sector of the theory

$$
\begin{equation*}
S=\frac{1}{2 k^{2}} \int \mathrm{~d}^{10} x \sqrt{-g} \mathrm{e}^{2 \phi}\left(R+4(\nabla)^{2}-\frac{1}{3} H^{2}-\frac{\alpha^{\prime}}{30} \operatorname{Tr}\left(F^{2}\right)\right) . \tag{24}
\end{equation*}
$$

Rather than directly solving the equations of motion for this action, it is much more convenient to look for bosonic backgrounds which are annihilated by some of $N=1$ supersymmetry transformations. This requires that in ten dimensions there exists at least one Majorana-Weyl spinor ϵ such that the super symmetry variations

$$
\begin{aligned}
& \delta \chi=F_{M N} \Gamma^{M N} \epsilon \\
& \delta \lambda=\left(\Gamma^{M} \partial_{M} \phi-\frac{1}{6} H_{M N P} \Gamma^{M N P}\right) \epsilon \\
& \delta \psi_{M}=\left(\partial_{M}+\frac{1}{4}\left(\omega_{M}^{A B}-H_{M}^{A B}\right) \Gamma_{A B}\right) \epsilon
\end{aligned}
$$

of the fermionic fields vanish for such solutions. We will construct a simple ansatz for the bosonic fields which does just this (cf [3]).

First, we choose ϵ to be the $\operatorname{Spin}(4,3)$-singlet of the Majorana-Weyl spinor of $\operatorname{SO}(5,5)$. Denote world indices of the eight-dimensional subspace indices by $\mu, \nu=1, \ldots, 8$ and the corresponding tangent space indices by $m, n=1, \ldots, 8$. We assume that no fields depend on the coordinates with indices $M, N=0$, 9 . It follows that

$$
\tilde{f}_{m n p s} \Gamma^{p s} \epsilon=\tilde{f}_{m n} \epsilon=0
$$

Using expression (20) for the tensor field strength $F_{m n}$, we see that the supersymmetry variation $\delta \chi$ vanishes.

Further, we choose the antisymmetric tensor field strength $H_{m n p}$ and metric tensor g in the form

$$
\begin{equation*}
H_{m n p}=\frac{1}{7} f_{m n p s} \partial^{s} \phi \quad g_{\mu \nu}=e^{(6 / 7) \phi} g_{0 \mu \nu} \tag{25}
\end{equation*}
$$

where g_{0} is the pseudo-Euclidean metric (10). Using the identities

$$
f_{m n p s} \Gamma^{m n p}=42 \Gamma_{s}
$$

and the explicit form of spin connectedness

$$
\omega_{\mu m n}=\frac{3}{7}\left(\delta_{\mu m} \partial_{n} \phi-\delta_{\mu n} \partial_{m} \phi\right)
$$

we prove that the variations $\delta \lambda$ and $\delta \psi_{M}$ also vanish for any $\phi(x)$.
It follows from the Bianchi identity

$$
\partial_{[m} H_{n p s]}=-\alpha^{\prime} \operatorname{Tr}_{8} F_{[m n} F_{p s]}
$$

that the tensor field strength

$$
\begin{equation*}
H_{m n p}=-\alpha^{\prime} \frac{3 \rho^{2}+r^{2}}{9\left(\rho^{2}+r^{2}\right)^{3}} f_{m n p s} x^{s} . \tag{26}
\end{equation*}
$$

If we compare (26) with (25), we find

$$
\begin{equation*}
\mathrm{e}^{(6 / 7) \phi}=e^{(6 / 7) \phi_{0}}+\alpha^{\prime} \frac{2 \rho^{2}+r^{2}}{3\left(\rho^{2}+r^{2}\right)^{2}} \tag{27}
\end{equation*}
$$

where ϕ_{0} is the value of the dilaton ϕ on ∞. Similarly, if we choose the G_{2}^{\prime}-singlet of the Majorana-Weyl spinor of $S O(5,5)$ and use expression (21) for the tensor field strength $F_{m n}$, we get an analogue of the solution (27).

Acknowledgment

This research was supported by RFBR grant 04-02-16324.

References

[1] Corrigan E, Devchand C, Fairlie D B and Nuyts J 1983 Nucl. Phys. B 214452
[2] Fairlie D B and Nuyts J 1984 J. Phys. A: Math. Gen. 172867 Fubini S and Nicolai H 1985 Phys. Lett. B 155369 Ivanova T A and Popov A D 1992 Lett. Math. Phys. 2485
[3] Harvey J A and Strominger A 1991 Phys. Rev. Lett. 66549 Gunaydin M and Nicolai H 1995 Phys. Lett. B 351169
[4] Duff M J, Evans J M, Khuri R R, Lu J X and Minasian R 1997 Phys. Lett. B 412281 Acharya B S, Figueroa-O'Farrill J M, O'Loughlin M and Spence B 1998 Nucl. Phys. B 514583
[5] Schwarz A S 1977 Commun. Math. Phys. 66549 Manton N S 1979 Nucl. Phys. B 158141
[6] Schafer R D 1966 An Introduction to Non-Associative Algebras (New York: Academic)
[7] Dundarer R, Gursey F and Tze C-H 1984 J. Math. Phys. 251496
[8] Eilenberg S 1948 Ann. Soc. Pol. Math. 19125
[9] Belavin A A, Polyakov A M, Schwartz A and Tyupkin Yu S 1975 Phys. Lett. B 5985

