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Abstract
The self-duality Yang–Mills equations in pseudo-Euclidean spaces of
dimensions d � 8 are investigated. New classes of solutions of the equations
are found. Extended solutions to the D = 10, N = 1 supergravity and super
Yang–Mills equations are constructed from these solutions.

PACS number: 04.50.+h

1. Introduction

In 1983 Corrigan et al [1] proposed a generalization of the self-dual Yang–Mills equations in
dimension d > 4:

fmnpsF
ps = λFmn (1)

where the numerical tensor fmnps is completely antisymmetric and λ = const is a nonzero
eigenvalue. By the Bianchi identity D[pFmn] = 0, it follows that any solution of (1) is a
solution of the Yang–Mills equations [Dm,Fmn] = 0. Some of these solutions can be found
in [2].

The many-dimensional Yang–Mills equations appear in the low-energy effective theory
of superstrings and supermembranes [3, 4]. In addition, there is a hope that Higgs fields and
supersymmetry can be understood through dimensional reduction from d > 4 dimensions
down to d = 4 [5].

The paper is organized as follows. Section 2 contains well-known facts about Cayley–
Dickson algebras and Lie algebras connected with them. In sections 3 and 4 the self-duality
Yang–Mills equations in pseudo-Euclidean spaces of dimensions d � 8 are investigated.
In section 5 extended solutions to the D = 10, N = 1 supergravity and super Yang–Mills
equations are constructed from these solutions.
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2. Cayley–Dickson algebras

Let us recall that the algebra A satisfying the identities

x2y = x(xy) yx2 = (yx)x (2)

is called alternative. It is obvious that any associative algebra is alternative. The most
important example of nonassociative alternative algebra is the Cayley–Dickson algebra. Let
us recall its construction (see [6]).

Let A be an algebra with an involution x → x̄ over a field F of characteristic �= 2. Given
a nonzero α ∈ F we define a multiplication on the vector space (A, α) = A ⊕ A by

(x1, y1)(x2, y2) = (x1x2 − αȳ2y1, y2x1 + y1x̄2).

This makes (A, α) an algebra over F. It is clear that A is isomorphically embedded in (A, α) and
dim(A, α) = 2 dim A. Let e = (0, 1). Then e2 = −α and (A, α) = A ⊕ Ae. Given any z =
x + ye in (A, α) we suppose z̄ = x̄ − ye. Then the mapping z → z̄ is an involution in (A, α).

Starting with the base field F the Cayley–Dickson construction leads to the following
sequence of alternative algebras:

(1) F, the base field.
(2) C(α) = (F, α), a field if x2 + α is the irreducible polynomial over F; otherwise,

C(α) � F ⊕ F .
(3) H(α, β) = (C(α), β), a generalized quaternion algebra. This algebra is associative but

not commutative.
(4) O(α, β, γ ) = (H(α, β), γ ), a Cayley–Dickson algebra. Since this algebra is not

associative, the Cayley–Dickson construction ends here.

The algebras in (1)–(4) are called composition. Any of them has the non-degenerate
quadratic form (norm) n(x) = xx̄, such that n(xy) = n(x)n(y). In particular, over the field R

of real numbers, the above construction gives three split algebras (e.g. if α = β = γ = −1)
and four division algebras (if α = β = γ = 1): the fields of real R and complex C numbers,
the algebras of quaternions H and octonions O, taken with the Euclidean norm n(x). Note
also that any simple nonassociative alternative algebra is isomorphic to the Cayley–Dickson
algebra O(α, β, γ ).

Let A be the Cayley–Dickson algebra and x ∈ A. Denote by Rx and Lx the operators of
right and left multiplication in A

Rx : a → ax Lx : a → xa.

It follows from (2) that

Rab − RaRb = [Ra,Lb] = [La,Rb] = Lba − LaLb. (3)

Consider the Lie algebra L(A) generated by all operators Rx and Lx in A. Choose in L(A)

the subspaces R(A), S(A) and D(A) generated by the operators Rx , Sx = Rx + 2Lx and
2Dx,y = [Sx, Sy] + S[x,y] respectively. Using (3), it is easy to prove that

3[Rx,Ry] = Dx,y + S[x,y] (4)

[Rx, Sy] = R[x,y] (5)

[Rx,Dy,z] = R[x,y,z] (6)

[Sx, Sy] = Dx,y − S[x,y] (7)

[Sx,Dy,z] = S[x,y,z] (8)

[Dx,y,Dz,t ] = D[x,z,t],y + Dx,[y,z,t] (9)
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where [x, y, z] = [x, [y, z]] − [y, [z, x]] − [z, [x, y]]. It follows from (4)–(9) that the algebra
L(A) is decomposed into the direct sum

L(A) = R(A) ⊕ S(A) ⊕ D(A)

of the Lie subalgebras D(A),D(A) ⊕ S(A) and the vector space R(A).
In particular, if A is a real division algebra, then D(A) and D(A) ⊕ S(A) are isomorphic

to the compact Lie algebras g2 and so(7) respectively. If A is a real split algebra, then D(A)

and D(A) ⊕ S(A) are isomorphic to noncompact Lie algebras g′
2 and so(4, 3).

3. Self-dual solutions in d = 8

Let A be a real linear space equipped with a nondenerate symmetric metric g of signature
(8, 0) or (4, 4). Choose the basis {1, e1, . . . , e7} in A such that

g = diag(1,−α,−β, αβ,−γ, αγ, βγ,−αβγ ) (10)

where α, β, γ = ±1. Define the multiplication

eiej = −gij + cij
kek (11)

where the structural constants cijk = gkscij
s are completely antisymmetric and different from

0 only if

c123 = c145 = c167 = c246 = c275 = c374 = c365 = 1. (12)

The multiplication (11) transforms A into a linear algebra. It can easily be checked that the
algebra A � O(α, β, γ ). In the basic {1, e1, . . . , e7} the operators

Rei
= ei0 + 1

2ci
jkejk Lei

= ei0 − 1
2ci

jkejk (13)

where eij are generators of the Lie algebra L(A) satisfying the switching relations

[emn, eps] = gmpens − gmsenp − gnpems + gnsemp. (14)

Now, let G be a matrix Lie group constructed by the Lie algebra D(A) ⊕ S(A). In the
space A equipped with the metric (10) we define the completely antisymmetric G-invariant
tensor fmnps (cf [7]):

fijk0 = cijk fijkl = gilgjk − gikgjl + cijmckl
m

where i, j, k, l �= 0. Representing the nonzero components of fmnps in the explicit form

f0123 = f0145 = f0167 = f0246 = f0275 = f0374 = f0365 = 1

f4567 = f2367 = f2345 = f1357 = f1364 = f1265 = f1274 = 1

we see that the tensor fmnps satisfies the identity

fmnijfps
ij = 6(gmpgns − gmsgnp) + 4fmnps. (15)

Define the projectors f̃ mnps of L(A) onto the subalgebra D(A)⊕S(A) and its generators f̃ mn

by

f̃ mnps = 3
8 (gmpgns − gmsgnp) − 1

8fmnps f̃ mn = f̃ mn
ij eij .

It follows from (15) that

fmnij f̃ ps
ij = −2f̃ mnps (16)

fmnij f̃
ij = −2f̃ mn. (17)
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Using the identities (7)–(9) and (13), we get the switching relations

[f̃ mn, f̃ ps] = 3
4 (f̃ m[pgs]n − f̃ n[pgs]m) − 1

8

(
fmn

k
[pf̃ s]k − fps

k
[mf̃ n]k

)
. (18)

Now we can find solutions of (1). We choose the ansatz (cf [2])

Am(x) = 4

3

f̃ mix
i

ρ2 + r2
(19)

where r2 = xkx
k and ρ ∈ R. Using the switching relations (18), we get

Fmn(x) = −4

9

(6ρ2 + 3r2)f̃ mn + 8f̃mni
s f̃ sj x

ixj

(ρ2 + r2)2
. (20)

It follows from (16), (17) that the tensor Fmn is self-dual. If the metric (10) is Euclidean,
then we have the well-known solution of equations (1) (see [2]). If the metric (10) is pseudo-
Euclidean, then we have a new solution.

4. Solutions in d < 8

Now we will find solutions of the self-duality equations in dimension d < 8. If Bα is a
subalgebra of the real Cayley–Dickson algebra A, then the subgroup Hα of automorphisms
of A leaving the element of Bα fixed is called the Galois group of A over Bα . A
description of these groups is known [8]. In particular, if A is the real division algebra
and B1 � R, B2 � C, B3 � H, then

G � Spin(7) H1 � G2 H2 � SU(3) H3 � SU(2).

If A is the real split algebra, then for the same choice of Bi ,

G � Spin(4, 3) H1 � G′
2 H2 � SU(2, 1) H3 � SU(1, 1).

Obviously, the orthogonal complement B⊥
α of Bα in A is the Hα-invariant subspace of

dimension dα = 8 − dim Hα . Now it is easy to construct a completely antisymmetric Hα-
invariant dα-tensor f α

mnps . It is a projection of the d-tensor fmnps ∈ �4(A) onto the subspace
�4(Bα). We can choose nonzero components of fmnps in the form

f 1
4567 = f 1

2367 = f 1
1274 = f 1

1357 = f 1
1364 = f 1

1265 = f 1
2345 = 1

f 2
1364 = f 2

1265 = f 2
2345 = 1

f 3
2345 = 1.

Now we can easily get analogues of the identities (15)–(18). In particular, the switching
relations (18) take the form
[
f̃ α

mn, f̃
α
ps

] = 3 − α

4 − α

(
f̃ α

m[pgs]n − f̃ α
n[pgs]m

) − 1

8 − 2α

(
f α

mn
k

[pf̃ α
s]k − f α

ps
k

[mf̃ α
n]k

)
.

Note that if we choose the ansatz Am(x) in the form

Am(x) = k
f̃ α

mix
i

ρ2 + r2

then the corresponding field strength Fmn is not self-dual for α = 2. In contrast, if α = 1 or
α = 3, then the choice of Am(x) in the form (21) reduces to a self-dual field strength. For
example, if α = 1, then k = 3/2 and

Fmn(x) = −3

2

(2ρ2 + r2)f̃ 1
mn + 3f̃ 1

mni
s f̃ 1

sj x
ixj

(ρ2 + r2)2
. (21)
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For a Euclidean metric this solution is known (see [2]). For a pseudo-Euclidean metric we have
a new solution. For α = 3 we have the well-known instanton solution [9] or its noncompact
analogue.

Note that in d = 4 there exists another solution of the Yang–Mills equations. It depends
on coordinates of the Minkowski space. Indeed, we choose the ansatz Am(x) in the form

Am(x) = 2emnx
n

λ2 + xkxk
(22)

where emn are generators of the Lie algebra so(p, q) satisfying the relations so(p, q). Then
the field strength

Fmn(x) = −4λ2 emn

(λ2 + xkxk)2
(23)

and

∂mFmn + [Am,Fmn] = 8λ2 emnx
m

(λ2 + xkxk)3

(
4 − δi

i

)
.

Hence the ansatz (22) satisfies the Yang–Mills equations if p + q = 4. If |p − q| = 4 or 0,
then the algebra so(p, q) is isomorphic to the direct sum so(3) ⊕ so(3) or so(2, 1) ⊕ so(2, 1)

of proper subalgebras. Therefore projecting Am(x) on these subalgebras, we again get the
instanton solution [9] or its noncompact analogue. If |p − q| = 2, then the algebra so(p, q)

is simple. In this case the solution (23) of the Yang–Mills equations is not self-dual.

5. Extended supersymmetric solutions

Let us now show that the above instanton solutions can be extended to solutions of the
D = 10, N = 1 supergravity and super Yang–Mills equations. Consider the purely bosonic
sector of the theory

S = 1

2k2

∫
d10x

√−g e2φ

(
R + 4(∇)2 − 1

3
H 2 − α′

30
Tr(F 2)

)
. (24)

Rather than directly solving the equations of motion for this action, it is much more convenient
to look for bosonic backgrounds which are annihilated by some of N = 1 supersymmetry
transformations. This requires that in ten dimensions there exists at least one Majorana–Weyl
spinor ε such that the super symmetry variations

δχ = FMN�MNε

δλ = (
�M∂Mφ − 1

6HMNP �MNP
)
ε

δψM = (
∂M + 1

4

(
ωAB

M − HAB
M

)
�AB

)
ε

of the fermionic fields vanish for such solutions. We will construct a simple ansatz for the
bosonic fields which does just this (cf [3]).

First, we choose ε to be the Spin(4, 3)-singlet of the Majorana–Weyl spinor of SO(5, 5).
Denote world indices of the eight-dimensional subspace indices by µ, ν = 1, . . . , 8 and the
corresponding tangent space indices by m, n = 1, . . . , 8. We assume that no fields depend on
the coordinates with indices M,N = 0, 9. It follows that

f̃ mnps�
psε = f̃ mnε = 0.

Using expression (20) for the tensor field strength Fmn, we see that the supersymmetry variation
δχ vanishes.
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Further, we choose the antisymmetric tensor field strength Hmnp and metric tensor g in
the form

Hmnp = 1
7fmnps∂

sφ gµν = e(6/7)φg0µν (25)

where g0 is the pseudo-Euclidean metric (10). Using the identities

fmnps�
mnp = 42�s

and the explicit form of spin connectedness

ωµmn = 3
7 (δµm∂nφ − δµn∂mφ)

we prove that the variations δλ and δψM also vanish for any φ(x).
It follows from the Bianchi identity

∂[mHnps] = −α′Tr8F[mnFps]

that the tensor field strength

Hmnp = −α′ 3ρ2 + r2

9(ρ2 + r2)3
fmnpsx

s. (26)

If we compare (26) with (25), we find

e(6/7)φ = e(6/7)φ0 + α′ 2ρ2 + r2

3(ρ2 + r2)2
(27)

where φ0 is the value of the dilaton φ on ∞. Similarly, if we choose the G′
2-singlet of the

Majorana–Weyl spinor of SO(5, 5) and use expression (21) for the tensor field strength Fmn,
we get an analogue of the solution (27).
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